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Abstract. The free-surface flow due to a submerged source in water of finite depth is considered. The fluid is 
assumed to be inviscid and incompressible. The problem is solved numerically by using a boundary integral 
equation formulation due to Hocking and Forbes [6]. The numerical results show that there is a train of waves on 
the free surface in accordance with the results of Mekias and Vanden-Broeck [5]. For small values of the Froude 
number, the amplitude of the waves is so small that the free surface is essentially flat in the far field. These waveless 
profiles agree with the calculations of Hocking and Forbes [6]. 

1. Introduction 

In recent years, many solutions have been obtained for free-surface flows due to submerged 
sources (see for example Tuck and Vanden-Broeck [1], Hocking [2], Vanden-Broeck and 
Keller [3], Mekias and Vanden-Broeck ([4],[5]) and Hocking and Forbes [6]). 

In this paper, we re-examine the flow due to a submerged source in a domain bounded above 
by a free surface and below by an horizontal bottom. We assume that there is a stagnation 
point on the free surface just above the source and that the flow is subcritical in the far field 
(see Fig. 1). 

As we shall see the problem can be characterized by the Froude number 

FB = (1.1) 

and the parameter 

hs 
r = ~--£, (1.2) 

where m is the strength of the source and g is the acceleration of gravity. The quantities hB 
and hs are the distances from the mean level of the free surface in the far field to the bottom 
and to the source, respectively. 

The flow configuration of Fig. 1 was considered before by Hocking and Forbes [6] and by 
Mekias and Vanden-Broeck [5]. 

Hocking and Forbes [6] solved the problem numerically by a boundary-integral-equation 
method. For a given value of r, they obtain a solution for each value of FB smaller than a 
limiting value F L, at which the scheme fails to converge. The values of FL depend on r and 
can be deduced from Fig. 6 in [6], where values of FLr -3/2 are plotted versus r. All the 
solutions of Hocking and Forbes [6] are characterized by a fiat free surface in the far field. 
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Figure 1. Sketch of the flow and of the coordinates. 

Mekias and Vanden-Broeck [5] solved the problem numerically by using a different 
boundary-integral-equation formulation. They obtained solutions which are characterized 
by a train of waves in the far field (i.e. the free surface is not fiat in the far field as in the 
computations of Hocking and Forbes [6]). For a given value of r, the solutions of Mekias and 
Vanden-Broeck [5] exist up to a critical value F* of FB at which the waves break. The values 
of F* depend on r and can be deduced from Fig. 7 in [5], where the values of F* are plotted 
versus the parameter b = 1 - r. For a given value of r, the value of F* is larger than the value 
F L . 

The purpose of this paper is to reconcile the apparently contradictory results in [5] and 
[6]. We present new numerical results based on the boundary-integral-equation formulation of 
Hocking and Forbes [6]. These results confirm the findings of Mekias and Vanden-Broeck [5]. 
There is a train of waves in the far field. Our results also confirm the calculations of Hocking 
and Forbes [6] in the sense that, for FB < F L, the amplitude of the waves is so small that the 
free surface is essentially flat in the far field. 

2, Formulation 

We consider the fluid flow due to a source S of strength m. The fluid is inviscid and incom- 
pressible and the flow is irrotational. The flow domain is bounded above by a free surface 
and below by a horizontal bottom. We assume that there is a stagnation point at the point E 
just above the source. We introduce Cartesian coordinates with the origin at E (see Fig. 1). 
Gravity g is acting in the negative V direction. We define dimensionless variables by choosing 
(m2/87r2g) 1/3 as the unit length and (mg/Tr)1/3 as the unit velocity. 

We introduce the complex potential function and the complex velocity 

: = 4, + i~, (2.1) 

w = u - i v .  (2.2) 
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Here u and v are the horizontal and vertical components of the velocity. Without loss of 
generality, we choose ¢ = 0 at the stagnation point E and ¢ = 0 on the free surface. In terms 
of the dimensionless variables, the dynamical condition on the free surface can be written as 

u 2 W v 2 W y = O .  (2.3) 

We denote by - H  the ordinate of the bottom and we define the mean depth hB by 

H = h s +  (2.4) 

If the flow approaches a uniform stream in the far field, then hB is the depth of the water in the 
far field. (this is the definition of hB used in Hocking and Forbes [6] (see their Fig. 1)). This 
can easily be shown as follows. Let us denote by d, the uniform depth in the far field. Since 
the dimensionless flux is rr, the velocity in the far field is then rr/d. Substituting this value of 
the velocity in (2.3), we find that the difference of ordinates between the stagnation point and 
the level of the free surface at infinity is (Tr/d) 2. Therefore H = d + (Tr/d) 2. Comparing this 
with (2.4), we find that this implies d = hB. 

Using our dimensionless variables, we can now rewrite (1.1) as 

F"=th ) (2.5) 

Following Hocking and Forbes [6], we introduce the new variable 

= e I (2.6) 

and we define the function ~(ff) = ~(ff) + i r (~)  by 

rc e_if~(¢)" (2.7) w(¢)  = 

When there are no waves on the free surface, then h* B = hB. However, when there are waves, 
h~ is not equal to hB and has to be found as part of the solution. 

By using the Cauchy integral formula, Hocking and Forbes [6] derived the following 
relation between T and 5 on the free surface 1 < ~ < oo 

1 [(1-~)(~B-~)] I f  c~ ~(~o) 
T(~) = ~ log (2 + --Tr - - ( 0  -- ( d~o. (2.8) 

Here ~B = --eeB, where eB is the value of the potential function at the point C with 
coordinates ( 0 , - H )  (see Fig. 1). We obtain another relation between r and 5 on the free 
surface by substituting (2.7) in (2.3). This yields 

~r e 2r + y = 0 (2.9) 

We obtain the values of x and y on the free surface by using (2.6) and the identity 

d(x + iy)  _ w _ l .  (2.10) 
df 
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This gives 

x(() = h*B f ¢  e-r((°) cos (f((o) d(o, (2.11) 

y(() = h* s f ¢ e  -r(¢°) sin~((0) d(0. (2.12) 

Eqs. (2.8), (2.9) and (2.12) define a nonlinear integro-differential equation for the unknown 
function 5(() on the free surface 1 < ¢ < c~. This equation is essentially the same as the 
equation defined by the relations (2.7) and (2.9) in Hocking and Forbes [6]. The main difference 
is that we choose y = 0 at the stagnation point, whereas Hocking and Forbes choose y = 0 
on the free surface at infinity. 

3. Numerical  procedure 

Hocking and Forbes [6] presented a numerical procedure to solve the system of Eqs. (2.8), (2.9) 
and (2.12). They used equally spaced mesh points in the variable a defined by ( = sin -2 a. 
As they mention in their paper, this is not an appropriate choice if waves are present on the 
free surface, because there is then a singularity at a = 0. 

Here we use equally spaced points in the potential function ¢. We first introduce the change 
of variables 

= e ¢ (3.1) 

and rewrite (2.8) as 

1 (1 - e ¢ ) ( - e  es - e¢)] 1 f0 e¢ 5'(¢o)e ¢° de0. (3.2) 
r' (¢) = ~ log ~ + 7 e¢O - e¢ 

Similarly we rewrite (2.12) as 

y'(¢) = h*B sink'(Co) de0 (3.3) 
71" J 0  

Here rl(¢) = T(e¢), ~1(¢) = 5(e¢), etc. Next we introduce the mesh points 

e x = ( I - 1 ) E ,  I = l , . . . , N  (3.4) 

and the corresponding unknowns 

6x = ~'(¢i) I = l , . . . , g  (3.5) 

Since 51 = 0 ,  there are only N - 1 unknowns ~I. 
We evaluate the values r M of r ' (¢)  at the midpoints 

¢/M __ ¢I "]" ¢I+1 I = 1, N - 1 (3.6) ~ " ° ' ~  

by applying the trapezoidal rule to the integral in (3.2) with a summation over the points ¢I. 
The symmetry of the quadrature and of the distribution of mesh points enabled us to evaluate 
the Cauchy principal value as if it were an ordinary integral. 
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Next we evaluate Yt = Y'(¢t) by applying again the trapezoidal rule to (3.3). This yields 

Yl : 0, 

YI = YI-I "q- - - e  i sin -- E,  I = I , . . . ,  N - 1. 
71" 

We evaluate the values of 51(¢) and y1(¢) at the midpoints (3.6) by the formulas 

5/M _ (it + 5i+l I = 1, N - l, (3.7) 
~ " " " 7  

yM _ Y1 + YI+l I = l , .  N - 1. (3.8) 
~ " ' 7  

We now satisfy (2.9) at the midpoints eM, I = 2 , . . . ,  N - 1 by substituting -r M, (3.7) and 
(3.8) in (2.9). For given values of FB (or hB see (2.5)) and r, this yields N - 2 nonlinear 
algebraic equations for the N + 1 unknowns (i2,. . . ,  (iN, h~ and eB. One more equation is 
obtained by expressing (il = 0 in terms of (i2 and (i3 by a two-point extrapolation formula. 

The last two equations are derived in the following way. First we calculate T(~) for 
~B < ~ < 1 by integrating numerically (2.8) with the change of variable ~o = e ¢~). Since 
I(i] = 7r/2 along the vertical line E C  (see Fig. 1), (2.7) yields the values of w along EC.  
Substituting these values in the identity (2.10) and integrating, we obtain the values of y(~) 
along EC. In particular, we obtain the ordinates Ys and - H  of the source and the bottom. 
From Fig. l, we see that 

hs = - y s  - H + hB. (3.9) 

The last two equations are then obtained when we substitute the calculated values of H and 
hs in (1.2) and (2.4). 

The system of N + 1 equations with N + 1 unknowns is solved by Newton's method. 

4. Discussion of the results 

We used the numerical scheme described in Section 3 to compute solutions for various values 
of FB and r = 0.5. We choose r = 0.5, because both Mekias and Vanden-Broeck [5] and 
Hocking and Forbes [6] present results for this value. 

Most of the calculations were performed with N = 510 and E = 0.0075. We also 
calculated solutions with smaller values of E and larger values of N and checked that the 
results presented here are independent of E and N within graphical accuracy. 

Typical free-surface profiles are shown in Fig. 2. Only half of the profiles are shown (the 
other half can be obtained by symmetry). There is a train of waves on the free surface in 
accordance with the results of Mekias and Vanden-Broeck [5]. However, for small values of 
FB (e.g. FB = 0.15), the waves are so small that they can hardly be seen on the figure and 
the profiles are fiat in the far field as in the calculations of Hocking and Forbes [6]. 

Hocking and Forbes [6] presented a free-surface profile for r = 0.5 and FB = 0.15 (see 
their Fig. 4). We found that their profile agrees with ours in Fig. 2. Similarly, Mekias and 
Vanden-Broeck [5] presented a profile for r = 0.5 and FB = 0.4 (see Fig. 5 in [5] where 
b = 1 - r). Their profile coincides with ours in Fig. 2. The agreement of the results in [5] and 
[6] with ours constitute a check on the three schemes. 
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Figure 2. Computed free-surface profiles for r = 0.5. The values of the Froude number FB from top to bottom 
are 0.15, 0.20, 0.25, 0.30 and 0.40. 

All the free-surface profiles in [5] are fiat in the far field (i.e. waveless). However, they are 
limited to values of FB < F g (see introduction). For FB > F L, the scheme in [5] fails to 
converge. For r = 0.5, F L ~ 0.32. Our numerical results in Fig. 2, show that solutions exist 
for FB > F z, but that they are characterized by waves of large amplitude in the far field. For 
FB < F z, the waves are small and can hardly be seen on the figures for FB < 0.25. In fact, 
Mekias and Vanden-Broeck [6] showed that the amplitude of the waves is exponentially small 
as FB --4 0. 

Finally, let us mention that for each value of r, the solutions exist up to a value F* of FB 
at which the waves in the far field reach the Stokes limiting configuration with a 120 ° angle at 
their crests. Solutions for FB close to F* are presented in [5] and will not be duplicated here. 

5. C o n c l u s i o n s  

We have considered a free-surface flow due to a submerged source in water of finite depth. We 
have presented a numerical procedure based on the boundary integral equation of Hocking 
and Forbes [6]. The numerical results in [6] are limited to values of Fu < F L. Our results 
extend these calculations to FB > F L. We have shown that there is a train of waves on the 
free surface in accordance with the findings of Mekias and Vanden-Broeck [5]. 
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